

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 2023-2025

Copper-catalyzed Ullmann coupling under ligand- and additive-free conditions. Part 2: S-Arylation of thiols with aryl iodides

Pongchart Buranaprasertsuk^{a,b}, Joyce Wei Wei Chang^a, Warinthorn Chavasiri^b, Philip Wai Hong Chan^{a,*}

^a Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

^b Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Received 26 October 2007; revised 25 December 2007; accepted 10 January 2008 Available online 15 January 2008

Abstract

S-Arylation of a wide variety of substituted aryl and aliphatic thiols with aryl halides catalyzed by copper iodide under mild ligandand additive-free conditions (" Bu_4NBr , PhMe, NaOH, reflux, 22 h) is accomplished in good to excellent product yields (up to 96%). © 2008 Elsevier Ltd. All rights reserved.

In the preceding Letter,¹ we described an efficient copper iodide-catalyzed process for the O-arylation of phenols and alcohols with equimolar amounts of aryl halides under mild ligand- and additive-free conditions. In an extension of this work, we wondered if a similar catalytic system could be developed for S-arylations. Indeed, we were keen to explore whether such an approach could provide a convenient route to aryl sulfides, a class of compounds commonly used in organic synthesis as building blocks and a prevalent structural unit found in many natural products and compounds of biological and materials importance.^{2,3} Recently, a number of groups have been reported that the copper-catalyzed Ullmann S-arylation of thiols in the presence of a ligand or additive could over-

come some of the problems traditionally associated with this reaction, which include high temperatures (typically above 140 °C), prolonged reaction times, the need for polar solvents such as HMPA, stoichiometric amounts of the metal catalyst, and low yields.^{3–11} Despite these advances, examples of analogous reactions that do not require a ligand or additive in tandem with aryl halides as starting materials have remained sparse, which would be desirable from an economical perspective. Herein, we report the copper iodide-catalyzed S-arylation of a wide variety of thiols with equimolar amounts of aryl iodides in yields of up to 96% under ligand- and additive-free conditions (Scheme 1). It is noteworthy to highlight that in all instances, the present procedure was found to proceed in

Scheme 1.

^{*} Corresponding author. Tel.: +65 6316 8760; fax: +65 6791 1961. *E-mail address:* waihong@ntu.edu.sg (P. W. H. Chan).

^{0040-4039/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.01.060

2c, R = Br **2g**, R= OMe **2d**, R = F

Entry	Substrates	Product		Yield ^b (%)
1 2 3 4 5 6	1a + 2a 1a + 2b 1a + 2c 1a + 2d 1a + 2e 1a + 2f	Me S S B	3a , $R = H$ 3b , $R = CI$ 3c , $R = Br$ 3d , $R = F$ 3e , $R = NO_2$ 3f , $R = Me$	95 96 96 96 80 94
7 8 9	1b + 2b 1b + 2e 1b + 2g	OMe S	3g , $R = Cl$ 3h , $R = NO_2$ 3i , $R = OMe$	90 78 78
10 11 12 13	1c + 2b 1c + 2e 1c + 2f 1c + 2g	CI S R	3j , $R = Cl$ 3k , $R = NO_2$ 3b , $R = Me$ 3g , $R = OMe$	80 80 81 62
14	1c + 2i	S CI	31	80
15 16 17 18	1a + 2h 1d + 2f 1d + 2b 1d + 2e	Me S	3m , $R = Me$ 3n , $R = Cl$ 3o , $R = NO_2$	96 94 95 90
19	1d + 2h	Me S Me	3p	95

Fable	1	(continued)
auto	1	(commuca)

^a All reactions were performed for 22 h with CuI: ${}^{n}Bu_{4}NBr:1:2:NaOH$, molar ratio = 1:1:10:10:20 in PhMe at reflux.

^b Isolated yield.

good to excellent yields being comparable to those obtained for the analogous ligand or additive promoted reactions.^{7b,11b,12}

Initially, we found that the conditions reported previously for the N-arylation of nitrogen heterocycles with aryl iodides also worked well for the coupling of a variety of substituted aryl thiols and aryl iodides (Table 1).¹³ In the presence of 10 mol% of CuI as a catalyst, 10 mol% of ^{*n*}Bu₄NBr as a phase transfer catalyst, and NaOH (2 equiv) in toluene at reflux for 22 h, S-arylation of 4-methylbenzenethiol 1a (1 equiv) with a variety of aryl iodides bearing either electron-withdrawing or electron-donating substituents (1 equiv) was shown to give the corresponding products in excellent yields of 80-96% (entries 1-6).¹⁴ Notably, this included the ability to exploit the difference in reactivity of arvl halides $(I \gg Br > Cl > F)$ by coupling 1a and the aryl iodide selectively in the presence of substrates containing aryl bromides, chlorides and fluorides. Similarly, the coupling of aryl thiols and aryl iodides containing various electron-withdrawing and electron-donating substrate combinations was found to proceed in good to excellent yields (entries 7-13). The present procedure was also shown to work well for the S-arylation of aryl thiols and aryl iodides in which either or both the starting materials contained sterically demanding ortho-substituents such as a methyl group or a fused benzene ring. In all the instances, the present procedure was found to proceed in good to excellent yields (entries 14-24).

To define the scope of the present reaction, the S-arylation of a representative aliphatic thiol, ethanethiol **1f**, with a variety of aryl iodides was also examined (Scheme 2). Analogous to our findings for the Cu-catalyzed O-arylation of alcohols, we found the reactivity of **1f** to be solvent and base dependent. When **1f** was treated with either 1 equiv of **2b** or **2f** in the presence of CuI (10 mol %) and ^{*n*}Bu₄NBr (10 mol %) in toluene at reflux for 22 h, the corresponding ethyl(aryl)sulfane adducts **4a** and **4b** were obtained in only

50% yield in both the cases. In contrast, repetition of these reactions but with DMF as a solvent and K_3PO_4 as a base was found to give **4a** and **4b** in yields of 86% and 82%, respectively. Under similar conditions, S-arylation of **1f** with **2j** was found to give **4c** in 86% yield.

In summary, we have developed a practical copper-catalyzed procedure for the S-arylation of thiols with aryl iodides that proceeded in good to excellent yields. The present protocol is applicable to a variety of thiols and aryl iodides containing electron-withdrawing, electron-donating and sterically demanding substrate combinations under mild conditions. Further investigation of the scope and applications of this reaction is currently underway and will be reported in due course.

Acknowledgement

This work was supported by a College of Science Start-Up Grant from Nanyang Technological University.

References and notes

- 1. Chang, J. W. W. et al. Tetrahedron Lett. 2008, 49, 2018-2022.
- (a) Metzner, P.; Thuillier, A. In Sulfur Reagents in Organic Synthesis; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Academic Press: San Diego, 1994; (b) Organic Sulfur Chemistry: Biochemical Aspects; Oae, S., Okuyama, T., Eds.; CRC Press: Boca Raton, FL, 1992; (c) Damani, L. A. In Sulfur-Containing Drugs and Related Compounds-Chemistry, Biochemistry and Toxicology; Ellis Horwood: Chichester, 1989; Vol. 1. Part A, Chapter 1.
- (a) Cai, L.; Chin, F. T.; Pike, V. W.; Toyama, H.; Liow, J. S.; Zoghbi, S. S.; Modell, K.; Briard, E.; Shetty, H. U.; Sinclair, K.; Donohue, S.; Tipre, D.; Kung, M. P.; Dagostin, C.; Widdowson, D. A.; Green, M.; Gao, W.; Herman, M. M.; Ichise, M.; Innis, R. B. J. Med. Chem. 2004, 47, 2208–2218; (b) Liu, G.; Link, J. T.; Pei, Z.; Reilly, E. B.; Leitza, S.; Nguyen, B.; Marsh, K. C.; Okasinski, G. F.; von Geldern, T. W.; Ormes, M.; Fowler, K.; Gallatin, M. J. Med. Chem. 2000, 43, 4025–4040; (c) Wang, Y.; Chackalamannil, S.; Hu, Z.; Clader, J. W.; Greenlee, W.; Billard, W.; Binch, H.; Crosby, G.; Ruperto, V.; Duffy, R.; McQuade, R.; Lachowicz, J. E. Bioorg. Med. Chem. Lett. 2000, 10, 2247–2250; (d) Beard, R. L.; Colon, D. F.; Song, T. K.; Davies, P. J. A.; Kochhar, D. M.; Chandraratna, R. A. S. J. Med. Chem. 1996, 39, 3556–3563; (e) Novi, M.; Petrillo, G.; Sartirana, M. L. Tetra-

hedron Lett. **1986**, *27*, 6129–6132; (f) Nagai, Y.; Irie, A.; Nakamura, H.; Hino, K.; Uno, H.; Nishimura, H. J. Med. Chem. **1982**, *25*, 1065–1070.

- (a) Ullman, F.; Sponagel, P. Chem. Ber. 1905, 38, 2211–2212; (b) Ullman, F. Chem. Ber. 1904, 37, 853–854; (c) Ullman, F. Chem. Ber. 1903, 36, 2382; (d) Ullman, F. Chem. Ber. 1901, 34, 2174–2185.
- (a) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337–2364; (b) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400–5449; (c) Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428–2439.
- (a) Pinchart, A.; Dallaire, C.; Gingras, M. *Tetrahedron Lett.* **1998**, *39*, 543–546; (b) Hickman, R. J. S.; Christie, B. J.; Guy, R. W.; White, T. J. *Aust. J. Chem.* **1985**, *38*, 899–904.
- (a) Zhu, D.; Xu, L.; Wu, F.; Wan, B. *Tetrahedron Lett.* 2006, 47, 5781–5784; (b) Palomo, C.; Oiarbide, M.; López, R.; Gómez-Bengoa, E. *Tetrahedron Lett.* 2000, 41, 1283–1286.
- 8. Lv, X.; Bao, W. J. Org. Chem. 2007, 72, 3863-3867.
- (a) Chen, Y.-J.; Chen, H.-H. Org. Lett. 2006, 8, 5609–5612; (b) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2002, 4, 3517–3520.
- (a) Carril, M.; SanMartin, R.; Domínguez, E.; Tellitu, I. *Chem. Eur.* J. 2007, 13, 5100–5105; (b) Verma, A. K.; Singh, J.; Chaudhary, R. *Tetrahedron Lett.* 2007, 48, 7199–7202; (c) Wong, K.-T.; Ku, S.-Y.; Yen, F.-W. *Tetrahedron Lett.* 2007, 48, 5051–5054; (d) Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. *Org. Lett.* 2002, 4, 2803–2806.
- (a) Zhang, H.; Cao, W.; Ma, D. Synth. Commun. 2007, 37, 25–35; (b) Deng, W.; Zou, Y.; Wang, Y.-F.; Liu, L.; Guo, Q.-X. Synlett 2004, 1254–1258.
- (a) Fernández-Rodríguez, M. A.; Shen, Q.; Hartwig, J. F. Chem. Eur J. 2006, 12, 7782–7796; (b) Wong, Y.-C.; Jayanth, T. T.; Cheng, C.-H. Org. Lett. 2006, 8, 5613–5616; (c) Taniguchi, N. Synlett 2005, 1687– 1690; (d) Taniguchi, N.; Onami, T. J. Org. Chem. 2004, 69, 915–920; (e) Harrison, D. J.; Tam, N. C.; Vogels, C. M.; Langler, R. F.; Baker, R. T.; Decken, A.; Westcott, S. A. Tetrahedron Lett. 2004, 45, 8493– 8496; (f) Varala, R.; Ramu, E.; Alam, M. M.; Adapa, S. R. Chem. Lett. 2004, 33, 1614–1615; (g) Still, I. W. J.; Toste, F. D. J. Org. Chem. 1996, 61, 7677–7680.
- Chang, J. W. W.; Xu, X.; Chan, P. W. H. Tetrahedron Lett. 2007, 48, 245–248.
- 14. Typical experimental procedure: To a round bottom flask containing thiol 1 (2 mmol), aryl iodide 2 (2 mmol), CuI (0.2 mmol), "Bu₄NBr (0.2 mmol) and NaOH (4 mmol) under a N₂ atmosphere was added toluene (1.3 mL). The reaction mixture was vigorously refluxed for 22 h. On cooling to room temperature, saturated NH₄Cl (20 mL) was added and the organic layer was extracted with Et₂OAc (3×20 mL). The combined organic layers were washed with brine (20 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography to afford the title compound.